Ученые продлили время работы сверхпроводящих квантовых устройств

Ученые Йельского университета и Национальной лаборатории Брукхейвена повысили время работы сверхпроводящих квантовых устройств за счет нового подхода к дизайну микросхем и выбору материалов. Новая парадигма позволила увеличить время когерентности кубитов до одной миллисекунды. Результаты опубликованы в журнале Nature communications.

Ученые Йельского университета и Национальной лаборатории Брукхейвена повысили время работы сверхпроводящих квантовых устройств за счет нового подхода к дизайну микросхем и выбору материалов. Новая парадигма позволила увеличить время когерентности кубитов до одной миллисекунды. Результаты опубликованы в журнале Nature Сommunications.

Квантовые компьютеры сегодня создаются на сверхпроводящих материалах. Квантовые вычисления основаны на использовании кубитов — единиц запоминания информации, способных принимать значение ноль, один и суперпозицию этих значений, являться одновременно нулем и единицей. В этой парадигме вычисления значительно ускоряются. Материалы, используемые для создания квантовых компьютеров, позволяют использовать также и явление сверхпроводимости — обеспечивать протекание электрического тока без потерь. Однако не все проблемы минимизируются сверхпроводимостью.

Вопросы рассеяния энергии критичны для квантовых компьютеров. Оно мешает кубитам оставаться в рабочем режиме. Когерентность — состояние, в котором кубиты способны работать с максимальной продуктивностью, — приходится поддерживать, в том числе за счет уменьшения вычислительных мощностей всего компьютера. Поэтому для развития квантовых вычислений важно найти способы сохранения когерентного состояния как можно дольше.

Ученые сосредоточились на изучении механизмов потерь энергии в сверхпроводящих квантовых схемах. Было известно, что использование тантала позволяет удерживать когерентность кубитов до трех десятых миллисекунды. Исследователи выявили, что сочетание очищенной обжигом сапфировой подложки и тантала значительно снижает энергетические потери на поверхности и в объеме диэлектриков. Использование тантала обеспечивает высокое качество переходов между слоями, составляющими кубиты, металл улучшает качество поверхности и, как следствие, интерфейсов с другими материалами. Отжиг сапфировых подложек при 1200 °С при постоянной подаче кислорода приводит к значительному снижению диэлектрических потерь в объеме готового кубита. Экспериментальные данные, полученные для структур из тантала и алюминия, подтвердили теоретические расчеты.

Схема организации и рабочих режимов кубита / ©Ganjam et. al., Nature Communocations

Кроме того, исследователи оптимизировали геометрию устройств. Кубит составили из трех тонкопленочных сверхпроводящих полос, нанесенных на подложку. Полосы были расположены так, чтобы можно было не только количественно оценить потерю энергии, но и определить, где она происходит. Благодаря выбранной архитектуре удалось точно различить поверхностные потери и объемные диэлектрические потери.

В результате была составлена структура, позволяющая в рамках существующих техпроцессов располагать на одной микросхеме несколько кубитов с улучшенными характеристиками. Полученные запоминающие элементы имеют временной промежуток между сигналами в процессе определения когерентности в диапазоне от 2,0 до 2,7 миллисекунды, что ограничивается временем релаксации энергии от 1,0 до 1,4 миллисекунды. Эти результаты значительно превосходят предыдущие достижения в области квантовой памяти на тонкопленочных устройствах. Новый подход позволил в три раза увеличить время состояния когерентности — с трех десятых миллисекунды до одной миллисекунды.

Исследования по характеристике потерь, представленные в этой работе, показали четкие и реалистичные пути для улучшения когерентности в сверхпроводящих кубитах. Разработка более специализированных архитектур и процессов или использование материалов с изначально меньшими потерями в четко идентифицируемой области кубитов критически важны для повышения когерентности системы. Кроме того, снижение поверхностных потерь должно сопровождаться оптимизацией объемных диэлектрических потерь, чего позволяет добиться проектирование микросхем с учетом потерь энергии.

Материал опубликован при поддержке сайта naked-science.ru
Комментарии

    Актуальные новости по теме "Array"